# Steps

  • Create simple machine learning model
  • Export the model in binary format
  • load the model into the code

# Install Packages

pip install scikit-learn

pip install pandas

# Download Data

We need to download the Music file

https://github.com/mosh-hamedani/python-supplementary-materials

https://github.com/mosh-hamedani/python-supplementary-materials/blob/main/music.csv

# Codes for ML

# Step 1: ML Learning code

  • Sample learning code

    import pandas as pd
    from sklearn.tree import DecisionTreeClassifier 
    from sklearn.model_selection import train_test_split
    from sklearn.metrics import accuracy_score
    
    music_data = pd.read_csv('music.csv')
    X = music_data.drop(columns = ['genre'])
    y = music_data['genre']
    
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2)
    
    model = DecisionTreeClassifier()
    model.fit(X_train,y_train)
    predictions = model.predict(X_test)
    score = accuracy_score(y_test, predictions)
    print(score)
    
  • Expected result

    image.png


# Step 2: Save the Model

  • Export the model into joblib format

    import pandas as pd
    from sklearn.tree import DecisionTreeClassifier 
    from sklearn import tree
    import joblib
    
    music_data = pd.read_csv('music.csv')
    X = music_data.drop(columns = ['genre'])
    y = music_data['genre']
    
    model = DecisionTreeClassifier()
    model.fit(X,y)
    
    joblib.dump(model,'music-recommender.joblob')
  • Expected Result (New file will be created)

    image.png


# Step3: Load the model

  • Load the model into the code
import joblib

model = joblib.load('music-recommender.joblob')

predictions = model.predict([[21,1]])
print(predictions)
  • Expected result

    image.png


# Resources