#
Steps
- Create simple machine learning model
- Export the model in binary format
- load the model into the code
#
Install Packages
pip install scikit-learn
pip install pandas
#
Download Data
We need to download the Music file
https://github.com/mosh-hamedani/python-supplementary-materials
https://github.com/mosh-hamedani/python-supplementary-materials/blob/main/music.csv
#
Codes for ML
#
Step 1: ML Learning code
Sample learning code
import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score music_data = pd.read_csv('music.csv') X = music_data.drop(columns = ['genre']) y = music_data['genre'] X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2) model = DecisionTreeClassifier() model.fit(X_train,y_train) predictions = model.predict(X_test) score = accuracy_score(y_test, predictions) print(score)Expected result

#
Step 2: Save the Model
Export the model into joblib format
import pandas as pd from sklearn.tree import DecisionTreeClassifier from sklearn import tree import joblib music_data = pd.read_csv('music.csv') X = music_data.drop(columns = ['genre']) y = music_data['genre'] model = DecisionTreeClassifier() model.fit(X,y) joblib.dump(model,'music-recommender.joblob')Expected Result (New file will be created)

#
Step3: Load the model
- Load the model into the code
import joblib
model = joblib.load('music-recommender.joblob')
predictions = model.predict([[21,1]])
print(predictions)
Expected result
